Dunkle kleine Kugeln schwimmen als Gitterstruktur auf einer Wasseroberfläche; Schematische Darstellung des Verfahrens zur Synthese von Polyanilin (2DPANI) auf der Wasseroberfläche.

Schematische Darstellung des Verfahrens zur Synthese von Polyanilin (2DPANI) auf der Wasseroberfläche. (Bild: Peng Zhang)

Leitende Polymere wie Polyanilin, Polythiophen und Polypyrrol sind für ihre hervorragende elektrische Leitfähigkeit bekannt und haben sich als vielversprechende kostengünstige, leichte und flexible Alternativen zu herkömmlichen Halbleitern und Metallen erwiesen. Die Bedeutung dieser Materialien wurde im Jahr 2000 durch die Verleihung des Nobelpreises für Chemie an Alan J. Heeger, Alan G. MacDiarmid und Hideki Shirakawa für ihre bahnbrechende Entdeckung und Entwicklung leitfähiger Polymere unterstrichen.

Trotz bedeutender Fortschritte leiten diese Materialien Elektronen hauptsächlich entlang ihrer Polymerketten. Die Leitfähigkeit zwischen den Polymersträngen oder -schichten bleibt jedoch begrenzt, da die Moleküle nicht gut miteinander verbunden und die elektronischen Wechselwirkungen schwach sind.

Um dieses Problem zu lösen, hat ein Forschungsteam der Technischen Universität Dreseden (TUD) und des Max-Planck-Instituts für Mikrostrukturphysik Halle in Zusammenarbeit mit internationalen Partnern einen mehrschichtigen zweidimensionalen Polyanilin-Kristall (2DPANI) synthetisiert und charakterisiert. "Dieses Material weist eine außergewöhnliche Leitfähigkeit auf – nicht nur innerhalb seiner Ebenen, sondern auch senkrecht über die Schichten hinweg. Das nennen wir einen metallischen out-of-plane Ladungstransport oder auch 3D Leitung. Das ist ein grundlegender Durchbruch in der Polymerforschung", erklärt Thomas Heine, Professor für Theoretische Chemie an der TU Dresden. Gemeinsam mit seinem Team an der TUD und dem Center for Advanced Systems Understanding Casus in Görlitz hat er die Struktur des Polymers zunächst simuliert und den metallischen Charakter berechnet.

Wie wurde die elektrische Leitfähigkeit bestimmt?

Xinliang Feng und sein Team am Center for Advancing Electronics Dresden (cfaed) der TUD und am Max-Planck-Institut für Mikrostrukturphysik in Halle synthetisierten das neue Polymer und führten Gleichstromtransportstudien durch. Diese Messungen zeigen eine anisotrope Leitfähigkeit mit 16 S/cm in der Ebene und 7 S/cm außerhalb der Ebene – etwa drei Größenordnungen höher als bei herkömmlichen linear leitenden Polymeren. Darüber hinaus zeigen Messungen bei niedrigen Temperaturen, dass die Leitfähigkeit außerhalb der Ebene mit abnehmender Temperatur zunimmt – ein charakteristisches Verhalten von Metallen – was die außergewöhnlichen metallischen elektrischen out-of-plane Transporteigenschaften des Materials bestätigt.

Weitere Messungen wurden am CIC Nanogune in San Sebastián, Spanien, mittels Infrarot- und Terahertz-Nahfeldmikroskopie durchgeführt. Diese ergaben eine Gleichstromleitfähigkeit von etwa 200 S/cm.

Dieser Durchbruch eröffnet die Möglichkeit, dreidimensionale metallische Leitfähigkeit in metallfreien organischen und polymeren Materialien zu erreichen. Damit bieten sich aufregende neue Perspektiven für Anwendungen in der Elektronik, der elektromagnetischen Abschirmung oder der Sensorik. Das metallische Polymer könnte als funktionelle Elektrode in der Elektro- und Photoelektrochemie dienen, zum Beispiel zur Produktion von Wasserstoff.

Die Ergebnisse der Studie wurden jüngst in der Fachzeitschrift "Nature" veröffentlicht.

Quelle: TU Dresden

Fachspezifisch informiert mit dem KGK-Contentletter

KGK-Logo

Aktuelle Nachrichten, spannende Anwenderberichte und branchenrelevante Produktinformationen sowie wissenschaftliche Veröffentlichungen erhalten Sie mit dem KGK-Contentletter einmal monatlich kostenfrei direkt in Ihr Postfach.

Hier registrieren und den Contentletter abonnieren!

Werden Sie Teil unseres Netzwerkes bei LinkedIn

KGK-Logo

KGK Kautschuk Gummi Kunststoffe - International Journal for Rubber and Polymer Materials sowie aktuelle Informationen – News, Trend- und Fachberichte – für Kautschuk- und Kunststoffverarbeiter. Folgen Sie unserem LinkedIn.

Sie möchten gerne weiterlesen?