Intelligentes türkis farbene Armband. Das Gummimaterial, das sich der Umgebungsfeuchte anpasst.

Intelligentes Gummimaterial, das sich der Umgebungsfeuchte anpasst. Das Armband demonstriert die Fähigkeit, sich an Bewegungen, zum Beispiel eines Handgelenks, anzupassen. (Bild: F. Sterl/Universität Stuttgart, FSM-Labor)

In der Publikation „Autonomous Adaption of Intelligent Humidity-Programmed Hydrogel Patches“ demonstrieren die Gruppen um Prof. Sabine Ludwigs (Institut für Polymerchemie) und Prof. Holger Steeb (Institut für Mechanik, MIB) von der Universität Stuttgart sowie Prof. Dominique Lunter (Pharmazeutische Technologie, Universität Tübingen) die Herstellung intelligenter Polymermaterialien. Intelligent bedeutet hier, dass sich die Materialeigenschaften autonom ihren Umgebungsbedingungen anpassen können. Abhängig von Luftfeuchte und Temperatur zeigen die Materialien Steifigkeitsänderungen über mehr als vier Größenordnungen und lassen sich selbst bei großen Deformationen elastisch verformen. Die mechanischen Eigenschaften sind damit für die jeweilige Anwendung einstellbar.

Welche Eigenschaften die Polymere besitzen

Die korrespondierende Autorin Sabine Ludwigs bezeichnet die Materialien als „Intelligente Gummimaterialien“ und ergänzt: „Diese extreme Anpassungsfähigkeit macht unsere Polymere extrem attraktiv für Roboter aus weichen organischen Materialien, wie sie – Stichwort Soft Robotics – beispielsweise in der Biomedizin oder auch bei Such- und Bergungseinsätzen verwendet werden. Auch für intelligente Hautanwendungen wie etwa Exoskelette aus weichen flexiblen Stoffen sind die Polymere sehr gut geeignet.“ Bei beiden Anwendungen muss das Material sowohl schnelle als auch langsame Bewegungen ermöglichen, also einstellbare viskoelastische Eigenschaften aufweisen. „Unser Material kann das“, sagt Holger Steeb. Die Anpassung an Feuchte und die reversible Wasseraufnahmefähigkeit eröffnen weiterhin den Einsatz als Pflaster für die kontrollierte Arzneimittelfreigabe durch die Haut. Ganz konkret experimentierten die Forscher mit der Freigabe des Schmerzmittels Diclofenac in einem Hautmodell. „Der Trick besteht darin, dass die Wirkstofffreisetzung als Reaktion auf die veränderliche Feuchte der Wunde, also abhängig vom Wundexsudat, vom Pflaster selbst gesteuert wird“, erklärt die Tübinger Pharmazie-Expertin Dominique Lunter. Die Arbeiten entstanden im Rahmen des neu eingerichteten, fakultätsübergreifenden Labors für Functional Soft Materials (FSM Labor) am Exzellenzcluster Datenintegrierte Simulationswissenschaft (EXC 2075, SimTech) der Universität Stuttgart. Es handelt sich hierbei um eine sehr erfolgreiche Kooperation der Arbeitsgruppen um Sabine Ludwigs aus der Polymerchemie und von Holger Steeb aus der Mechanik, die im FSM-Labor ihre Expertisen im Bereich der Chemie sowie der Funktion und Mechanik von intelligenten Polymermaterialien bündeln.

Abhängigkeit der Steifigkeit von äußeren Umweltbedingungen, wie Temperatur und relativer Luftfeuchte.
Abhängigkeit der Steifigkeit von äußeren Umweltbedingungen, wie Temperatur und relativer Luftfeuchte. (Bild: Universität Stuttgart, FSM-Labor, F. Sterl)

Das ist die Vision der Forscher

Über die Feuchte- und Temperaturabhängigkeit hinausgehend wollen die Stuttgarter Forscher in Zukunft multifunktionale Materialsysteme untersuchen, die sich sowohl autonom an ihre Umgebung anpassen, als auch auf aktive Trigger, wie zum Beispiel elektrische Stimuli reagieren können. Geplant ist auch die Modellierung und damit die Vorhersage komplexer Architekturen auf der Basis von Simulationen. Die Ergebnisse der Forschung im Bereich der Polymeren Materialwissenschaften kommen somit auch der Forschung des Exzellenzclusters „Daten-Integrierte Simulationswissenschaft SimTech“ der Universität zugute. Neben der Förderung durch SimTech wurde das Projekt von der DFG im Rahmen des Schwerpunktprogramms SPP2100 „Soft Material Robotics“ finanziert. Die Kooperation mit Dominique Lunter ist als uniübergreifende Zusammenarbeit im Rahmen der Exzellenzstrategien der Universität Stuttgart und der Universität Tübingen entstanden.

Quelle: Universität Stuttgart, Institut für Polymerchemie

Werden Sie Teil unseres Netzwerkes bei LinkedIn

KGK-Logo

KGK Kautschuk Gummi Kunststoffe - International Journal for Rubber and Polymer Materials sowie aktuelle Informationen – News, Trend- und Fachberichte – für Kautschuk- und Kunststoffverarbeiter. Folgen Sie unserem LinkedIn.

Sie möchten gerne weiterlesen?